Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12104/92283
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Almanza Rodríguez, Rubén German | |
dc.date.accessioned | 2023-06-18T20:06:33Z | - |
dc.date.available | 2023-06-18T20:06:33Z | - |
dc.date.issued | 2022-11-30 | |
dc.identifier.uri | https://wdg.biblio.udg.mx | |
dc.identifier.uri | https://hdl.handle.net/20.500.12104/92283 | - |
dc.description.abstract | “Mainstream economics discovered that as its modeling techniques became more sophisticated some neglected insights could be brought back in.” Paul R. Krugman (1994) The recent Covid-19 sanitary crisis not only affected the global economy on both sides of the market, supply and demand; but also had different impact in high-income and lowincome countries. Keynesian theory is the most useful theory to analyze economic crisis, however this theory focused in failures on the demand side. In the other hand, there are empirical models that focus on supply side by inspecting the unemployment and its causes, which are mostly demand failures. Motivated by the desire to analyze the impact on the supply side of an exogenous shock, this dissertation consists of a compilation of three neoclassical growth models, we introduce the Richard production function to depict the technological changes and the stages of the industrialization in an economy. The Richard production function has variable marginal productivity and variable marginal returns, these features allow the neoclassical growth models to displays multiple equilibria and lay out the Solow-Sawn model as particular cases of a generalized growth model that we are introducing. | |
dc.description.tableofcontents | Acknowledgments i List of Figures vii Introduction ix 1 The Say’s law, exogenous shock affecting the supply side of the market 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Richard function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Analytical properties. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Neoclassical properties. . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Neoclassical growth model with two sectors. . . . . . . . . . . . . . . . . . 6 1.3.1 Elementary assumptions. . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Percapita variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Household income and consumption curve. . . . . . . . . . . . . . . . . . . 9 1.4.1 Properties of HIC-curve. . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.2 Economic interpretation of the HIC-curve theorem. . . . . . . . . . 11 1.5 Multiple equilibria and poverty traps. . . . . . . . . . . . . . . . . . . . . . 15 1.5.1 Multiple equilibria theorem. . . . . . . . . . . . . . . . . . . . . . . 15 1.5.2 Poverty traps or virtuous circle after an exogenous shock. . . . . . . 16 1.6 Post shock recovery, financial stimuli and Covax program. . . . . . . . . . 17 1.6.1 Financial stimulus aimed at recovery. . . . . . . . . . . . . . . . . . 18 1.6.2 Covax program and the recovery in low-income countries. . . . . . . 19 1.7 Conclusions and public policies implications . . . . . . . . . . . . . . . . . 21 iii 2 The impact of pandemic and infectious diseases in economic growth 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Richard function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Neoclassical properties. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Neoclassical growth model with Richard production function . . . . . . . . 27 2.3.1 Elementary assumptions. . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Competitive market wage curve. . . . . . . . . . . . . . . . . . . . . 29 2.4 The impact of exogenous shock. . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.1 Pandemic and infectious diseases. . . . . . . . . . . . . . . . . . . . 30 2.4.2 Cyclicality of labor Productivity. . . . . . . . . . . . . . . . . . . . 32 2.4.3 Overcoming the poverty trap. . . . . . . . . . . . . . . . . . . . . . 33 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Formalization of the Rosenstein-Rodan and Myrdal theories 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Richard function and Cobb-Douglas function. . . . . . . . . . . . . . . . . 39 3.2.1 Richard function literature. . . . . . . . . . . . . . . . . . . . . . . 39 3.2.2 Analytical properties. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.3 Neoclassical properties. . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 A two sectors neoclassical growth model . . . . . . . . . . . . . . . . . . . 44 3.3.1 Elementary assumptions. . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 Percapita variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.3 Competitive market wage curve. . . . . . . . . . . . . . . . . . . . . 51 3.3.4 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Multiple equilibria scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Poverty traps and virtuous circle. . . . . . . . . . . . . . . . . . . . 58 3.4.3 The big push . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 iv 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 General conclusions 65 Appendix 67 A.1 Logistic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A.2 Mathematical proofs of lemmas and theorems . . . . . . . . . . . . . . . . 69 Bibliography 71 v | |
dc.format | application/PDF | |
dc.language.iso | eng | |
dc.publisher | Biblioteca Digital wdg.biblio | |
dc.publisher | Universidad de Guadalajara | |
dc.rights.uri | https://www.riudg.udg.mx/info/politicas.jsp | |
dc.title | Applications of the Richard’s Production function in economics | |
dc.type | Tesis de Doctorado | |
dc.rights.holder | Universidad de Guadalajara | |
dc.rights.holder | Almanza Rodríguez, Rubén German | |
dc.coverage | ZAPOPAN, JALISCO | |
dc.type.conacyt | doctoralThesis | |
dc.degree.name | DOCTORADO EN ESTUDIOS ECONOMICOS | |
dc.degree.department | CUCEA | |
dc.degree.grantor | Universidad de Guadalajara | |
dc.rights.access | openAccess | |
dc.degree.creator | DOCTOR EN ESTUDIOS ECONOMICOS | |
dc.contributor.director | Ruiz Porras, Antonio | |
Aparece en las colecciones: | CUCEA |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
DCUCEA10108FT.pdf | 1.65 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.