Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12104/92064
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Victor Hugo, Martin Del Campo Moreno | |
dc.date.accessioned | 2023-04-19T18:50:57Z | - |
dc.date.available | 2023-04-19T18:50:57Z | - |
dc.date.issued | 2019-05-31 | |
dc.identifier.uri | https://wdg.biblio.udg.mx | |
dc.identifier.uri | https://hdl.handle.net/20.500.12104/92064 | - |
dc.description.abstract | A magnetic system is a set of magnetic dipoles, often called spins, where each one is a vertex of a lattice. In these kinds of systems, the spins might interact with each others in diferent ways, being able to exchange energy. The diferent ways the spins interact on the system results in diferent models. In these systems, there is a measure of the order in the system called order parameter. The value of the order parameter is 1 when the system is in complete order and 0 when it is in complete disorder. For example, in ferromagnetic interaction, the order parameter is usually the magnetization. We will study the dynamics of discrete spin systems. The phenomena in which the temperature of a system is suddenly dropped from a very high temperature to a very low temperature without allowing real time to change are known as quenching dynamics | |
dc.description.tableofcontents | 1 Introduction 1 1.1 Models and dynamics for spin systems. . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Spin models........................................................4 2.1 Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 The Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Standard Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Planar Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Two-state Potts model: Ising model . . . . . . . . . . . . . . . . . . 7 3 Features of quenching dynamics 9 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Dynamical rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 Equivalence between planar and standard Potts model . . . . . . . . 12 3.2.3 Social pressure dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Measurements and evolution of the system . . . . . . . . . . . . . . . . . . . 16 3.3.1 Domain coarsening and magnetization . . . . . . . . . . . . . . . . . 16 3.3.2 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Persistence and nite size scaling . . . . . . . . . . . . . . . . . . . . 19 3.3.4 Exit probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 Domain walls and dynamical exponent z . . . . . . . . . . . . . . . . 23 4.1.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.5 Exit probability E(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Social pressure dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Domain walls decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.5 Exit probability E(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Conclusions and discussions ..... . .. . . .. . . . . .. . ......46 5.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Social pressure dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A.1.1 Domain walls and dynamical exponent z . . . . . . . . . . . . . .. 48 A.1.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A.1.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A.1.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A.2 Social pressure dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 54 A.2.1 Domain walls and dynamical exponent z . . . . . . . . . . . . . . . . 54 A.2.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A.2.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 57 A.2.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 | |
dc.format | application/PDF | |
dc.language.iso | eng | |
dc.publisher | Biblioteca Digital wdg.biblio | |
dc.publisher | Universidad de Guadalajara | |
dc.rights.uri | https://www.riudg.udg.mx/info/politicas.jsp | |
dc.subject | Dipolos | |
dc.subject | Spins | |
dc.subject | The Phenomena | |
dc.title | QUENCHING DYNAMICS OF SPIN SYSTEMS WITH DISCRETE SYMMETRY: A GATEWAY TO STUDY OPINION DYNAMICS WITH MULTIPLE DISCRETE OPINION | |
dc.type | Tesis de Licenciatura | |
dc.rights.holder | Universidad de Guadalajara | |
dc.rights.holder | Victor Hugo, Martin Del Campo Moreno | |
dc.coverage | GUADALAJARA, JALISCO. | |
dc.type.conacyt | bachelorThesis | |
dc.degree.name | LICENCIATURA EN FISICA | |
dc.degree.department | CUCEI | |
dc.degree.grantor | Universidad de Guadalajara | |
dc.rights.access | openAccess | |
dc.degree.creator | LICENCIADO EN FISICA | |
dc.contributor.director | Soham, Biswas | |
Appears in Collections: | CUCEI |
Files in This Item:
File | Size | Format | |
---|---|---|---|
LCUCEI10116FT.pdf | 2.6 MB | Adobe PDF | View/Open |
Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.