Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/92064
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVictor Hugo, Martin Del Campo Moreno
dc.date.accessioned2023-04-19T18:50:57Z-
dc.date.available2023-04-19T18:50:57Z-
dc.date.issued2019-05-31
dc.identifier.urihttps://wdg.biblio.udg.mx
dc.identifier.urihttps://hdl.handle.net/20.500.12104/92064-
dc.description.abstractA magnetic system is a set of magnetic dipoles, often called spins, where each one is a vertex of a lattice. In these kinds of systems, the spins might interact with each others in diferent ways, being able to exchange energy. The diferent ways the spins interact on the system results in diferent models. In these systems, there is a measure of the order in the system called order parameter. The value of the order parameter is 1 when the system is in complete order and 0 when it is in complete disorder. For example, in ferromagnetic interaction, the order parameter is usually the magnetization. We will study the dynamics of discrete spin systems. The phenomena in which the temperature of a system is suddenly dropped from a very high temperature to a very low temperature without allowing real time to change are known as quenching dynamics
dc.description.tableofcontents1 Introduction 1 1.1 Models and dynamics for spin systems. . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Spin models........................................................4 2.1 Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 The Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Standard Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Planar Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Two-state Potts model: Ising model . . . . . . . . . . . . . . . . . . 7 3 Features of quenching dynamics 9 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Dynamical rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 Equivalence between planar and standard Potts model . . . . . . . . 12 3.2.3 Social pressure dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Measurements and evolution of the system . . . . . . . . . . . . . . . . . . . 16 3.3.1 Domain coarsening and magnetization . . . . . . . . . . . . . . . . . 16 3.3.2 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Persistence and nite size scaling . . . . . . . . . . . . . . . . . . . . 19 3.3.4 Exit probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 Domain walls and dynamical exponent z . . . . . . . . . . . . . . . . 23 4.1.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.5 Exit probability E(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Social pressure dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Domain walls decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.5 Exit probability E(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Conclusions and discussions ..... . .. . . .. . . . . .. . ......46 5.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Social pressure dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 A.1 Glauber dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A.1.1 Domain walls and dynamical exponent z . . . . . . . . . . . . . .. 48 A.1.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A.1.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A.1.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A.2 Social pressure dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 54 A.2.1 Domain walls and dynamical exponent z . . . . . . . . . . . . . . . . 54 A.2.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A.2.3 Persistence probability . . . . . . . . . . . . . . . . . . . . . . . . . . 57 A.2.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dc.formatapplication/PDF
dc.language.isoeng
dc.publisherBiblioteca Digital wdg.biblio
dc.publisherUniversidad de Guadalajara
dc.rights.urihttps://www.riudg.udg.mx/info/politicas.jsp
dc.subjectDipolos
dc.subjectSpins
dc.subjectThe Phenomena
dc.titleQUENCHING DYNAMICS OF SPIN SYSTEMS WITH DISCRETE SYMMETRY: A GATEWAY TO STUDY OPINION DYNAMICS WITH MULTIPLE DISCRETE OPINION
dc.typeTesis de Licenciatura
dc.rights.holderUniversidad de Guadalajara
dc.rights.holderVictor Hugo, Martin Del Campo Moreno
dc.coverageGUADALAJARA, JALISCO.
dc.type.conacytbachelorThesis
dc.degree.nameLICENCIATURA EN FISICA
dc.degree.departmentCUCEI
dc.degree.grantorUniversidad de Guadalajara
dc.rights.accessopenAccess
dc.degree.creatorLICENCIADO EN FISICA
dc.contributor.directorSoham, Biswas
Appears in Collections:CUCEI

Files in This Item:
File SizeFormat 
LCUCEI10116FT.pdf2.6 MBAdobe PDFView/Open


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.