Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/90884
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSandoval Guzmán, Betsy
dc.date.accessioned2022-09-12T22:10:06Z-
dc.date.available2022-09-12T22:10:06Z-
dc.date.issued2022-04-07
dc.identifier.urihttps://wdg.biblio.udg.mx
dc.identifier.urihttps://hdl.handle.net/20.500.12104/90884-
dc.description.abstractThis thesisexplorestheadvantagesoforganizingpowersystemsdataintensorar- raysandusingtensordecompositionstoprocesstheinformationoverthetraditional wayin2Darrays(matrices).Todoso,thisresearchworkreformulatessomewell- knownpowersystemproblems,suchasdataclustering,datavisualizationanddata compression forsmartmeterandPMUdata,ScreeningContingencyandCoherence Identication.This,undertheassumptionthatmanymeasureddatainthepower system canhaveamultidimensionalrepresentationintoatensor,whichcananal- ysed usingmethodsbasedontensordecomposition.Todemonstratetheadvantages of workingwiththesemethods;alongthisthesisfourdataminingmethodologies are proposedtounderstandingofthepowersystemdatacollectedbythemoderns monitoring systems: 1)An unsuperviseddataminingalgorithmisproposedforhomogeneoussmartgrid data, particularlyforelectricalloadprolesusingParallelFactorAnalysis(PARAFAC) tensor decomposition.Sincetheproposedtensorrepresentationallowstoassigna givendimensiontoaparticularvariableinvolved;datareduction,datacompression, data visualizationanddataclusteringarearchivedseparatelyforeveryvariable. 2)Data CompressionofPowerSystemsInformationfromAdvancedMonitoringIn- frastructure suchasPhasorMeasurementUnits(PMUs)andtheSmartMeter(SMs) is proposedusingTuckertensordecompositiontoachieveahighcompressionratio and alowreconstructionerror. 3)Screening ContingencyandCoherencyIdenticationarefacedsimultaneously ii based onPARAFAC-2tensordecomposition.Todoso,thetemporalandgeographical information isextractedfromatensorarraywithmultiplescontingencies. 4)A hybridclusteringalgorithmforelectricalloadprolesconsideringweather variablesisproposed.Theproposedalgorithmisbasedontheideaofunifyingcost functions resultingfromthedimensionalityreductionformulationofmultidimensional arrays. The resultsinthefourproposedmethodologiesshowthatthereformulationof the problemsyieldsmoreinformationabouttheeventstudiedthanwithtraditional matrix-based approaches.Thusdemonstratingthattensordecompositionisatool with greatpotentialfordataanalysisinelectricpowersystems.
dc.description.tableofcontents1 Introduction 1 1.1 Motivation . ................................ 1 1.2 Objectives . ................................ 4 1.3 Hypothesis . ................................ 5 1.4 StructureoftheThesis . ......................... 5 2 TheoryofTensorDecomposition 7 2.1 Introduction . ............................... 7 2.1.1 NomenclatureandDenitionofTensor . ............ 8 2.1.2 TwoDimensionalDataRepresentation(MatrixRepresentation) 9 2.1.3 MultidimensionalDataRepresentation(TensorRepresentation) 9 2.2 MathematicalBackground . ....................... 10 2.2.1 Kroneckerproduct . ....................... 10 2.2.2 Khatri-Raoproduct . ....................... 11 2.2.3 The n-mode product:Tensormultiplication . ......... 11 2.2.4 UnfoldingProcess . ........................ 11 2.2.5 Rank-onetensor . ......................... 11 2.2.6 Sub-arraysofa3DTensor:FibersandSlices . ......... 12 2.2.6.1 Fibers . ......................... 12 2.2.6.2 Slices . ......................... 13 2.3 SelectedTensorDecompositions . .................... 13 2.3.1 PARAFACTensorDecomposition . ............... 13 2.3.1.1 AnalysisofthePARAFACtensordecompositionand the \PrincipleofParallelProportionalProles . .. 15 2.3.2 TuckerTensorDecomposition . ................. 16 2.3.2.1 AnalysisoftheTuckertensordecompositionandthe core tensor . ...................... 18 2.4 PARAFAC-2Decomposition . ...................... 19 2.5 ConclusionsofChapter . ......................... 20 3 AnUnsupervisedDataMiningApproachforHomogeneousElectri- cal LoadProles 21 3.1 Introduction . ............................... 21 3.2 StateoftheArt . ............................. 23 3.3 InterpretationofPARAFACtensordecompositionforSmartMeterdata 25 3.3.1 AnalysisofslicesandbersasresultofPARAFACmodelde- composition . ........................... 26 3.4 AddedvalueofPARAFACinElectricalPowerSystems . ....... 27 3.5 MainResults . .............................. 28 3.5.1 TensordesignfortheERCOTsystem . ............. 29 3.5.2 PARAFACTensordecompositionoftheERCOTsystem . .. 30 3.5.2.1 DataCompression . .................. 30 3.5.2.2 Datavisualizationanddataclustering . ....... 31 3.5.3 DataReconstruction:Missingdata . .............. 35 3.6 AnalysisofComputationalComplexity . ................ 37 3.7 Conclusion . ................................ 39 4 DataCompressionforAdvanceSensingandCommunicationTech- nology inSmartGrids 40 4.1 Introduction . ............................... 40 4.2 StateoftheArt . ............................. 42 4.2.1 CompressionmethodsforPMUdata . ............. 43 4.2.2 CompressionMethodsforSmartMeterdata . ......... 45 4.3 DatacompressionbasedonTuckerdecomposition . .......... 46 4.3.1 ComputingTuckertohandlemissingdatausingHigher-Order Orthogonal Iteration(HOOI) . ................. 48 4.4 ApplicationsusingSmartGridData . ................. 49 4.4.1 CaseStudy1:datacompressionofPMUmeasurments . ... 50 4.4.1.1 PMUdatacompressionbasedonTuckerdecomposi- tion . .......................... 53 4.4.1.2 PMUdatacompressionbasedonSVD . ....... 55 4.4.2 CaseStudy2:datacompressionofSmartMeterdata . .... 56 4.4.2.1 SMdatacompressionbasedonTuckerdecomposition 57 4.4.2.2 SMdatacompressionbasedonSVD . ........ 59 4.5 ConclusionsoftheChapter . ....................... 61 5 ScreeningContingencyandCoherencyIdenticationinPowerSys- tems 62 5.1 Introduction . ............................... 62 5.2 TwoDimensionalDynamicFeatureExtraction . ............ 64 5.3 MultidimensionalDynamicFeatureExtraction . ............ 65 5.3.1 MultidimensionalRepresentation(TensorRepresentation) . . 65 5.3.2 Extractionofthespatialandtemporalinformationfromthe proposedtensor . ........................ 65 5.3.3 SeverityIndexbasedontemporalinformation . ........ 67 5.4 NumericalResults . ............................ 67 5.4.1 TestCase . ............................ 68 5.4.2 ContingencyScreening . ..................... 69 5.4.3 IdenticationofCoherentAreas . ................ 71 5.5 Discussion . ................................ 72 5.6 ConclusionsChapter . .......................... 73 6 ClusteringofCoupledArraysonPowerSystemsUsingaHybrid DecompositionApproach 75 6.1 Introduction . ............................... 75 6.1.1 Summaryofcontributions . ................... 76 6.2 ClusteringofIndividualArrays . .................... 77 6.2.1 Clusteringofindividualvariablesstoredinmatrixarrays:In- trinsic approach . ......................... 77 6.2.2 Clusteringofcombinedvariablesstoredintoatensor:Extrinsic approach . ............................. 79 6.3 ClusteringofCoupledArrayswithCombinedVariables:HybridAp- proach . .................................. 80 6.3.1 Reconstructionofvariablesafterdecomposition . ....... 82 6.4 IllustrativeExampleUsingSyntheticData . .............. 82 6.5 DemonstrationUsingSmartGridData . ................ 85 6.5.1 Testcaseandconstructionofcoupledarrays . ......... 86 6.5.2 Mainresults . ........................... 86 6.5.3 Comparisonusingclusteringofindividualarraysanddetection of Atypicaldays . ......................... 89 6.5.3.1 Comparisonusingonlyinternalvariables . ...... 89 6.5.3.2 Comparisonusingonlyexternalvariables . ...... 90 6.5.3.3 Detectionofatypicaldays . .............. 92 6.6 ConclusionsoftheChapter . ....................... 93 7 ConclusionsoftheThesis 94 7.1 GeneralConclusions . .......................... 94 7.2 GeneralKeyContributions . ...................... 94 7.3 FutureWork . ............................... 96 A Appendix 97 A.1 SingularValueDecomposition(SVD) . ................. 97 A.2 PrincipalComponentAnalysis(PCA) . ................. 98
dc.formatapplication/PDF
dc.language.isospa
dc.publisherBiblioteca Digital wdg.biblio
dc.publisherUniversidad de Guadalajara
dc.rights.urihttps://www.riudg.udg.mx/info/politicas.jsp
dc.titleANÁLISIS DE DATOS EN SISTEMAS ELÉCTRICOS DE POTENCIA MEDIANTE TÉCNICAS BASADAS EN MÉTODOS DE DESCOMPOSICIÓN TENSORIAL
dc.typeTesis de Doctorado
dc.rights.holderUniversidad de Guadalajara
dc.rights.holderSandoval Guzmán, Betsy
dc.coverageGUADALAJARA, JALISCO
dc.type.conacytdoctoralThesis
dc.degree.nameDOCTORADO EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES
dc.degree.departmentCUCEI
dc.degree.grantorUniversidad de Guadalajara
dc.rights.accessopenAccess
dc.degree.creatorDOCTOR EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES
dc.contributor.directorBarocio Espejo, Emilio
Aparece en las colecciones:CUCEI

Ficheros en este ítem:
Fichero TamañoFormato 
DCUCEI10078FT.pdf5.28 MBAdobe PDFVisualizar/Abrir


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.