Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/81209
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.advisorCuevas Jiménez, Erik Valdemar
dc.contributor.advisorZaldívar Navarro, Daniel
dc.contributor.authorGalvéz Rodríguez, Jorge De Jesús
dc.date.accessioned2020-07-26T18:49:58Z-
dc.date.available2020-07-26T18:49:58Z-
dc.date.issued2019-01-10
dc.identifier.urihttps://hdl.handle.net/20.500.12104/81209-
dc.identifier.urihttps://wdg.biblio.udg.mx
dc.description.abstractEvolutionary Computation Techniques (ECT) are part of artificial intelligence discipline concerned with the design of optimization algorithms for solving complex optimization problems through the search of the optimal solution. Traditionally, several ECT have been conceived by the abstraction of natural, biological or even social phenomena as search strategies to improve the location and allocation of global optima while decreasing the possibility of being stagnated on suboptimal solutions. Although such methodologies are designed to meet the requirements of generic optimization problems, no single evolutionary algorithm can solve all the problems competitively. Therefore, researchers have been devoted to find novel optimization strategies to achieve better performance indexes. This thesis presents some new ECT designed considering different persectives than traditional ECT. The proposed ECT adopt the developmental approach, which is based on fuzzy logic, clustering, multi-agent consensus and knowledge-based paradigms to generate novel search strategies in the optimization process. Fuzzy logic emulates the human reasoning in the use of imprecise information to generate decisions. Unlike traditional approaches, fuzzy logic comprises an alternative way of processing, which permits modeling complex systems through the use of human knowledge. Clustering is defined as the process of dividing a set of elements into disjoint and homogenous sets, called clusters and it is commonly used in classification problems. On the other hand, multi-agent systems involve the cooperation of agents through information sharing mechanisms to accomplish certain tasks. These mechanisms connect several agents using simple local behaviors to generate complex interaction models among agents to solve certain tasks. Finally, the presented knowledge-based approach is a field closely related to data mining and machine learning which consider the process of identifying novel, significant, potentially useful information in the data to find hidden relationshps among the data.
dc.description.tableofcontentsCHAPTER 1.INTRODUCTION. 1.1 Research objectives. 1.1.1 General objective. 1.1.2 Particular objectives. CHAPTER 2. ENGINEERING OPTIMIZATION . 2.1 Optimization. 2.2 Optimization techniques. 2.3 Heuristics and meta-heuristics. 2.3.1 Genetic Algorithms. 2.3.2 Genetic Programming. 2.3.3 Evolution Strategies. CHAPTER 3. EVOLUTIONARY ALGORITHMS. 3.1 General structure of evolutionary algorithms. 3.2 Types of evolutionary algorithms. 3.2.1 Particle Swarm Optimization. 3.2.2 Artificial Bee Colony. 3.2.3 Differential Evolution. 3.2.4 Gravitational Search Algorithm. CHAPTER 4. FUZZY LOGIC OPTIMIZATION ALGORITHM. 4.1 Fuzzy logic and reasoning models. 4.2 Fuzzy Logic Optimization Algorithm. 4.3 Computational procedure. 4.4 Experimental Study. 4.4.1 Unimodal test functions. 21 4.4.2 Multimodal test functions. 4.4.3 Hybrid test functions. CHAPTER 5. CLUSTER CHAOTIC OPTIMIZATION. 5.1 Preliminary concepts. 5.1.1 Clustering and the Ward method. 5.1.2 Chaotic sequences. 5.2 Cluster Chaotic Optimization. 5.2.1 Initialization. 5.2.2 Clustering. 5.2.3 Intra-Cluster operation. 5.2.4 Extra-Cluster operation. 5.3 Computational procedure. 5.4 Experimental study. 5.4.1 Unimodal test functions. 5.4.2 Multimodal test functions. 5.4.3 Hybrid test functions. 5.4.4 Engineering design problem. CHAPTER 6. NEIGHBORHOOD CONSENSUS FOR CONTINUOUS. OPTIMIZATION...........48 6.1 Reactive flocking models. 6.2 Neighborhood-based Consensus for Continuous Optimization. 6.2.1 Initizalization. 6.2.2 Reactive flocking response. 6.2.3 Update mechanism. 6.3 Computational procedure. 6.4 Experimental study. 6.4.1 Test functions. 6.4.2 Engineering design problem. CHAPTER 7. KNOWLEDGE BASED OPTIMIZATION. 7.1 Self-Organization Map. 7.2 Evolutionary Algorithm-Self-Organization Map. 7.2.1 Initizalization. 7.2.2 Training. 7.2.3 Extracting information. 7.2.4 Solution production. 7.2.5 Construction of the new training set. 7.3 Computational procedure. 7.4 Experimental study. CHAPTER 8. CONCLUSIONS. APPENDICES. APPENDIX A1. APPENDIX A2. APPENDIX A3. APPENDIX B1. APPENDIX B2. REFERENCES.
dc.formatapplication/PDF
dc.language.isospa
dc.publisherBiblioteca Digital wdg.biblio
dc.publisherUniversidad de Guadalajara
dc.rights.urihttps://www.riudg.udg.mx/info/politicas.jsp
dc.subjectAlgoritmo Evolutivos
dc.subjectEnfoques Hibridos.
dc.titleANÁLISIS Y DISEÑO DE ALGORITMOS EVOLUTIVOS UTILIZANDO MÚLTIPLES ENFOQUES HÍBRIDOS
dc.typeTesis de Doctorado
dc.rights.holderUniversidad de Guadalajara
dc.rights.holderGalvéz Rodríguez, Jorge De Jesús
dc.coverageGUADALAJARA, JALISCO
dc.type.conacytDoctoralThesis-
dc.degree.nameDOCTORADO EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES-
dc.degree.departmentCUCEI-
dc.degree.grantorUniversidad de Guadalajara-
dc.rights.accessopenAccess-
dc.degree.creatorDOCTOR EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES-
Aparece en las colecciones:CUCEI

Ficheros en este ítem:
Fichero TamañoFormato 
DCUCEI10011.pdf
Acceso Restringido
433.91 kBAdobe PDFVisualizar/Abrir    Request a copy


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.