Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/80726
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorArana Daniel, Nancy Guadalupe
dc.contributor.advisorLópez Franco, Carlos Alberto
dc.contributor.authorGallegos Muro, Alberto Alejandro
dc.date.accessioned2020-04-10T19:25:20Z-
dc.date.available2020-04-10T19:25:20Z-
dc.date.issued2016
dc.identifier.urihttps://hdl.handle.net/20.500.12104/80726-
dc.identifier.urihttp://wdg.biblio.udg.mx
dc.description.abstractResumen Con el incremento en el poder computacional, la cantidad de datos a ser procesados en pequeños periodos de tiempo ha crecido exponencialmente, esto junto con la importancia de clasificar datos a gran escala de manera eficiente. Las máquinas de vector soporte han generado buenos resultados al clasificar grandes cantidades de datos con alta dimensionalidad, tal como los datos generados por predicción de estructuras de proteínas, reconocimiento de correo basura, diagnosis médico, reconocimiento óptico de caracteres, clasificación de texto, etc. La mayoría de los enfoques del estado del arte para aprendizaje a gran escala usan métodos de optimización tradicionales, como programación cuadrática y gradiente descendente, lo que hace que el uso de algoritmos evolutivos para entrenar máquinas de vector soporte para clasificación a gran escala un área a ser explorada. La presente tesis propone un enfoque que resulta fácil de implementar, paralelizable y con una complejidad computacional lineal, basado en algoritmos evolutivos y Kernel-Adatron para resolver problemas de clasificación a gran escala.
dc.description.tableofcontentsÍndice general l. Introducción 1.1. Antecedentes de Aprendizaje Automático . 1.2. Antecedentes de Optimización 1.3. Planteamiento del Problema 1.4. Hipótesis . 1.5. Objetivos . 1 2 3 4 5 7 1.6. Metodología . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. Máquinas de Vector Soporte 9 2.1. Antecedentes ....... . 2.2. Descripción de Máquinas de Vector Soporte 2.3. Kernel Adatron . . . . . . . . . . . . . . . . 9 12 14 2.4. Máquinas de Vector Soporte para Entrenamiento a Gran Escala . . . . . . . 16 VI ÍNDICE GENERAL 3. Algoritmos Evolutivos 19 3.1. Antecedentes .... 19 3.2. Evolución Diferencial 20 3.3. Optimización por Enjambre de Partículas . 22 3.4. Colonia Artificial de Abejas . 24 3.5. ?Colonia Artificial de Abejas 27 4. Máquinas de Vector Soporte Entrenadas con Algoritmos Evolutivos Empleando Kernel Adatrón para Clasificación a Gran Escala 31 4.1. Kernel Adatrón Entrenado con Algoritmos Evolutivos 4.2. Conjuntos de Datos . . . . . . . . . . . . . . . . . . . 4.2.1. Conjuntos de Dato para Clasificación a Gran Escala . 4.2.2. Predicción de Estructura de Partículas 4.2.3. Señales Mioeléctricas 4.3. Resultados . . . . . . . . . . A. Código Fuente A.0.1. Kernel Adatrón A.0.2. Optimización por Enjambre de Partículas A.0.3. Evolución Diferencial ........... . 31 34 34 35 40 45 71 71 80 107 ÍNDICE GENERAL A.0.4. Colonia Artificial de Abejas . A.0.5. ?Colonia Artificial de Abejas B. Conclusiones C. Trabajo Futuro D. Lista de publicaciones Bibliografía VII 120 140 161 163 164 191
dc.formatapplication/PDF
dc.language.isospa
dc.publisherBiblioteca Digital wdg.biblio
dc.publisherUniversidad de Guadalajara
dc.rights.urihttps://wdg.biblio.udg.mx/politicasdepublicacion.php
dc.titleMáquinas de Vector Soporte Entrenadas con Algortimos Evolutivos Empleando Kernel Adatron para Clasificación a Gran Escala
dc.typeTesis de Doctorado
dc.rights.holderUniversidad de Guadalajara
dc.rights.holderGallegos Muro, Alberto Alejandro
dc.coverageGuadalajara, Jalisco, México
dc.type.conacytDoctoralThesis-
dc.degree.nameDOCTORADO EN CIENCIAS DE LA ELECTRÓNICA Y LA COMPUTACIÓN-
dc.degree.departmentCUCEI-
dc.degree.grantorUniversidad de Guadalajara-
dc.rights.accessopenAccess-
dc.degree.creatorDOCTOR EN CIENCIAS DE LA ELECTRÓNICA Y LA COMPUTACIÓN-
Appears in Collections:CUCEI

Files in This Item:
File SizeFormat 
DCUCEI00074FT.pdf29.87 MBAdobe PDFView/Open


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.