Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12104/73562
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Pérez Cisneros, Marco Antonio | |
dc.contributor.advisor | Alanís García, Alma Yolanda | |
dc.contributor.author | Cerpa Ceja, Guillermo | |
dc.date.accessioned | 2019-06-13T23:53:56Z | - |
dc.date.available | 2019-06-13T23:53:56Z | - |
dc.date.submitted | 2017 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12104/73562 | - |
dc.identifier.uri | http://wdg.biblio.udg.mx | |
dc.description.abstract | En esta tesis se presentan los resultados del uso de algoritmos de entrenamiento, para redes neuronales recurrentes, basados en el filtro de Kalman extendido. Así mismo las redes neuronales recurrentes entrenadas con el algoritmo aquí propuesto, son aplicadas para la predicción de series de tiempo en sistemas eléctricos de potencia, particularmente para la predicción de precios de la energía eléctrica. El uso del Filtro de Kalman en el entrenamiento de redes neuronales se ha incrementado en gran medida; esto debido a los excelentes resultados obtenidos en diversas aplicaciones (Feldkamp, 2001; Haykin, 1999; Puskorius, 1994; S inghal, 1989; Wan, 2001; Zhang, 1999). La investigación en redes neuronales, desde su resurgimiento en la década de los ochenta del siglo pasado ha suscitado un creciente interés, en muy diversas áreas de la ingeniería. Existen muchas clasificaciones para las redes neuronales, por el momento sólo se hará la distinción entre las redes neuronales estáticas y las redes neuronales recurrentes o dinámicas. | |
dc.description.tableofcontents | ÍNDICE ,, Introducción ........................................................................................................................... 7 Predicción de precios de energía eléctrica usando redes neuronales artificiales ................. 11 1.1 Introducción ........................................................................................................................... 11 1.2. Revisión de publicaciones .............................................................................. ....................... 12 1.3. ¿Qué y cómo estamos pronosticando? ...... ........................................................................... 18 1.3.l. El precio de la energía eléctrica ..................................................................................... 18 1.3.2. Horizontes de pronóstico ............................................................................................... 19 1.3.3. Análisis de los pronósticos ................................... ................. ... .. .. .................................. 20 1.3.4. Visión general de los enfoques de modelado .......................................................... ...... 20 1.3.5. Modelos de inteligencia computacional ........................................................................ 22 1.3.6. Taxonomía de las redes neuronales artificiales ............. ................................. .. ............. 23 1.3.7. Fortalezas y debilidades ......................................................................... .. ...................... 26 1.4. Una mirada al futuro de la predicción de precios de la energía eléctrica ............................ 27 Redes neuronales artificiales ............................................................................. .................. 28 2.1 Redes Neuronales Biológicas .......................... ........ , .............................................................. 28 2.2 Las redes neuronales artificiales y su relación con las biológicas ................ .......................... 30 2.3 El modelo matemático de una neurona .......................... ............ ............................ ....... ........ 32 2.4 Arquitecturas neuronales ....................................................................................................... 38 2.4.1 Redes neuronales unicapa ........................... ........... .......................... .............................. 38 2.4.2 Redes neuronales multicapa ...................................... ...................... ............................... 38 2.4.3 Redes neuronales recurrentes ............................................................................ ......... ... 38 2.5 El Perceptrón .......................................................................................................................... 39 2.6 El Perceptrón Multicapa ......................................................................................................... 41 2. 7 Redes Neuronales de Base Radial .............................................................. ............................ 43 2.8 El MLP entrenado con el FKE ............................................................ ........ .............................. 45 Reporte DE Resultados ........................................................................................................ 50 Conclusiones ........................................................................................................................ 59 Bibliografía .......................................................................................................................... 61 | |
dc.format | application/PDF | |
dc.language.iso | spa | |
dc.publisher | Biblioteca Digital wdg.biblio | |
dc.publisher | Universidad de Guadalajara | |
dc.rights.uri | https://wdg.biblio.udg.mx/politicasdepublicacion.php | |
dc.title | Predicción de Precios de Energía Eléctrica usando Redes Neuronales Artificiales | |
dc.type | Tesis de Maestria | |
dc.rights.holder | Universidad de Guadalajara | |
dc.rights.holder | Cerpa Ceja, Guillermo | |
dc.type.conacyt | masterThesis | - |
dc.degree.name | MAESTRIA EN AGUA Y ENERGÍA | - |
dc.degree.department | CUTONALA | - |
dc.degree.grantor | Universidad de Guadalajara | - |
dc.degree.creator | MAESTRO EN AGUA Y ENERGÍA | - |
Aparece en las colecciones: | CUTONALA |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
MCUTONALA00046.pdf Acceso Restringido | 669.28 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.