Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12104/110352
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Ramírez Arellano, Víctor Santiago | |
dc.date.accessioned | 2025-09-09T22:22:22Z | - |
dc.date.available | 2025-09-09T22:22:22Z | - |
dc.date.issued | 2024-11-01 | |
dc.identifier.uri | https://wdg.biblio.udg.mx | |
dc.identifier.uri | https://hdl.handle.net/20.500.12104/110352 | - |
dc.description.abstract | The intent of this project is to provide a detailed introduction to the Expectation Maximization (EM) and Expectation Conditional-Maximization (ECM) algorithms. With the aim of presenting an interesting and sufficiently complete exposition of these methods, we base our investigation on two major points, namely the convergence properties of the EM algorithm, and the formulation of the ECM algorithm as a solution to the problem when the M-step of the EM algorithm is complicated. Our starting point is a review of the statistical theory that is necessary for the comprehension and development of our topics of interest. After describing the mathematical construction of the EM and ECM algorithms, we give a discussion about their main convergence results where we prove the monotonicity property of the EM algorithm. As an application of these methods, we consider the important problems of estimating the parameters of univariate normal mixture and probit ordinal regression models by the method of maximum likelihood (ML). Finally, on the basis of the obtained results, we make use of the programming language for statistical computing R to illustrate the convergence properties of the EM algorithm in the case of a mixture of two univariate normal distributions, and to examine the performance of the ECM algorithm applied to a probit ordinal regression model in the case of four classes. | |
dc.description.tableofcontents | Introduction. . . . . . . .1 1 Some statistical concepts and results. . . . . . . . .4 2 The EM and ECM algorithms. . . .. . . . . .9 2.1 From the EM to the ECM algorithm . . . . . . . . . . . . . . . . . . . . 9 2.2 Convergence properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Applications of the EM and ECM algorithms 18 3.1 Univariate normal mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Probit ordinal regression models . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Computation of the function Q . . . . . . . . . . . . . . . . . . . 26 3.2.2 Maximization with respect to the parameters δj . . . . . . . . . . 27 3.2.3 Maximization with respect to the parameter vector β∗ . . . . . . . 29 4 Numerical illustrations 32 4.1 Mixture of two univariate normal distributions . . . . . . . . . . . . . . . 32 4.2 Probit ordinal regression model for the case of four classes . . . . . . . . 36 Conclusion. . . . .. . . . . .38 Bibliography. . . . . . . . .41 | |
dc.format | application/PDF | |
dc.language.iso | eng | |
dc.publisher | Biblioteca Digital wdg.biblio | |
dc.publisher | Universidad de Guadalajara | |
dc.rights.uri | https://www.riudg.udg.mx/info/politicas.jsp | |
dc.subject | Convergence Properties | |
dc.subject | Estimation Of Parameters | |
dc.subject | Em Algorithm | |
dc.subject | Ecm Algorithm | |
dc.subject | Method Of Maximum Likelihood | |
dc.subject | Mixture Of Univariate Normal Distributions | |
dc.subject | Probit Ordinal Regression Model | |
dc.title | Maximum Likelihood Estimation of the Parameters of Univariate Normal Mixture and Probit Ordinal Regression Models via the EM and ECM Algorithms | |
dc.type | Tesis de Licenciatura | |
dc.rights.holder | Universidad de Guadalajara | |
dc.rights.holder | Ramírez Arellano, Víctor Santiago | |
dc.coverage | GUADALAJARA, JALISCO | |
dc.type.conacyt | bachelorThesis | |
dc.degree.name | LICENCIATURA EN MATEMATICAS | |
dc.degree.department | CUCEI | |
dc.degree.grantor | Universidad de Guadalajara | |
dc.rights.access | openAccess | |
dc.degree.creator | LICENCIADO EN MATEMATICAS | |
dc.contributor.director | Montesinos López, Abelardo | |
Aparece en las colecciones: | CUCEI |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
LCUCEI10217FT.pdf | 2.19 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.