Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/104790
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorCortes Robles, Oswaldo Isaac
dc.date.accessioned2024-09-18T16:49:43Z-
dc.date.available2024-09-18T16:49:43Z-
dc.date.issued2022-12-09
dc.identifier.urihttps://wdg.biblio.udg.mx
dc.identifier.urihttps://hdl.handle.net/20.500.12104/104790-
dc.description.abstractIncreased consumer demand for electrical energy has forced the incorporation of distributed generation sources into traditional electrical power system schemes, resulting in changes in the way these distributed generation systems (DGSs) are studied. The constant monitoring of power quality (PQ) in these systems is an important aspect of the study of DGSs because the electronic devices inherent in these schemes produce various phenomena that aect them, causing serious problems for the consumers. On the other hand, the development of new data acquisition technologies has given rise to an increase in the amount of data extracted from the DGS that requires advanced techniques for its analysis, where machine learning (ML) has recently been playing a crucial role, making it a current research issue. This thesis focuses on PQ monitoring in distributed generation electrical power systems, with an emphasis on disturbance classication using an intelligent approach based on ML-based methods. Here, some typical problems with traditional machine learning techniques, such as the manual feature selection for disturbance generalization, are addressed to enhance disturbance classication. Moreover, a dataset generation protocol is proposed to standardize the assessment of ML-based classication methods. For this aim, three dierent dataset types, i.e., synthetic, simulated, and real-world measured, are used to train and assess the classication model. Finally, a comprehensive study about unbalanced data in uences on model training was conducted in this thesis to contribute to the classication model training data paradigm. Results obtained in this thesis open new opportunities for the development of future research work on PQ monitoring.
dc.description.tableofcontentsAbstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Chapter 1 Thesis protocol 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Intelligent power quality monitoring on distributed generation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Machine learning based methods for PQ disturbance classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Related works on disturbance classication for intelligent PQ monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Justication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2 Development of disturbance dataset for training and as- sessment of machine learning based models 15 2.1 Dataset relevance in the training process of machine learning-based models for disturbance classication . . . . . . . . . . . . . . . . . . 16 2.2 Dataset scheme for disturbance classication . . . . . . . . . . . . . 16 2.3 Synthetic disturbance dataset generation . . . . . . . . . . . . . . . . 19 2.3.1 Numerical models for PQ disturbance generation . . . . . . . 20 2.3.2 Typical parameters variation of disturbances according to PQ monitoring standards . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Example of PQ disturbance generation using disturbances numerical models and MATLAB programming. . . . . . . . . . 22 2.4 Dataset generation based on simulation . . . . . . . . . . . . . . . . 23 2.4.1 Features of the simulation software . . . . . . . . . . . . . . . 24 2.4.2 Test system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2.1 Microgrid description . . . . . . . . . . . . . . . . . . 25 2.4.2.2 Test microgrid applications . . . . . . . . . . . . . . . 25 ix 2.4.3 Example of disturbance generation by simulation software for dataset development . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Real-world dataset for PQ disturbance classication . . . . . . . . . 27 2.5.1 Development of real-world disturbance dataset . . . . . . . . 28 2.5.2 Available real-world disturbance dataset . . . . . . . . . . . . 29 2.5.3 Development of real-world disturbance dataset through laboratory equipment . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 3 Traditional machine learning based disturbance classica- tion method with qualitative-quantitative hybrid approach 35 3.1 Disturbance classication based on machine learning . . . . . . . . . 35 3.1.1 Disturbance classication problem denition . . . . . . . . . . 36 3.1.2 Traditional machine learning methodology for PQ disturbance classication . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2.1 Signal processing . . . . . . . . . . . . . . . . . . . . 36 3.1.2.2 Feature extraction of relevant characteristics . . . . . 37 3.1.2.3 PQ disturbance classication . . . . . . . . . . . . . . 37 3.1.3 Challenges in traditional machine learning based disturbance classication methods . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Proposed disturbance classication method . . . . . . . . . . . . . . 38 3.2.1 Multi-scale recurrence quantication decomposition based method 38 3.2.1.1 Signal decomposition by using VMD . . . . . . . . . 39 3.2.1.2 Feature extraction using RQA . . . . . . . . . . . . . 42 3.2.1.3 Features selection . . . . . . . . . . . . . . . . . . . . 44 3.2.1.4 PQ disturbances classication using directed acyclic graph support vector machines (DAG-SVM) . . . . . . . . . 46 3.3 Proposed methodology for PQ disturbance monitoring . . . . . . . . 48 3.4 Simulation results and performance evaluation . . . . . . . . . . . . 49 3.4.1 Validation of the proposed methodology using synthetic test signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 PQ disturbance classication on simulated microgrid . . . . . 54 3.4.2.1 Classication training . . . . . . . . . . . . . . . . . . 55 3.4.2.2 Test case # 1: Capacitor bank energisation . . . . . . 55 3.4.2.3 Test case # 2: Temporary load increment . . . . . . 58 3.4.2.4 Test case # 3: Harmonics produced by the power electronic devices . . . . . . . . . . . . . . . . . . . . . . 60 x 3.4.2.5 Comparison with implemented methods and discussion 62 3.4.3 Measured signals . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Chapter 4 Fast-training feedforward neural network for multi-scale disturbance classication 71 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.1 Deep learning related works on disturbance classication . . . 72 4.1.2 Chapter highlights . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1 Deep learning approach for power quality disturbance classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1.1 Feedforward neural network architecture . . . . . . . 75 4.2.1.2 Overtting and undertting . . . . . . . . . . . . . . 76 4.2.1.3 Model training loss function . . . . . . . . . . . . . . 77 4.3 Classication of power quality disturbances using synthetic signals . 77 4.3.1 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.2 Training of proposed deep feedforward neural network . . . . 78 4.3.3 Performance evaluation of the proposed classication method 80 4.3.4 Comparison with other deep neuronal network architectures referred in the literature . . . . . . . . . . . . . . . . . . . . . . 82 4.4 Classication of power quality disturbances on microgrids using VMDFFNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.1 Training dataset update . . . . . . . . . . . . . . . . . . . . . 86 4.4.2 Study Case A: Sudden disconnection of a load . . . . . . . . . 86 4.4.3 Study Case B: Switching event cased by bank of capacitors . 87 4.4.4 Study Case C: Autonomous mode operation . . . . . . . . . . 88 4.5 Laboratory test measurements . . . . . . . . . . . . . . . . . . . . . 89 4.6 Chapter conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Chapter 5 Unbalanced-data based machine learning models training side eect for disturbance classication 95 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1.1 Unbalanced data problem denition . . . . . . . . . . . . . . 96 5.1.2 Related works on the issue of unbalanced training . . . . . . . 97 5.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.1.4 Chapter contributions . . . . . . . . . . . . . . . . . . . . . . 98 xi 5.2 Methodology for the study of unbalanced-data eect on ML-based models training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2.1 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2.1.1 Signal decomposition parameters for VMD . . . . . . 99 5.2.2 Extraction and selection of relevant features . . . . . . . . . . 100 5.2.3 PQ disturbance classication . . . . . . . . . . . . . . . . . . 101 5.2.3.1 Classication models description . . . . . . . . . . . . 101 5.2.3.2 Training of classication models . . . . . . . . . . . . 102 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.1 Analysis of the unbalanced-data eect on ML-based models training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.1.1 Training dataset . . . . . . . . . . . . . . . . . . . . . 104 5.3.1.2 Training validation of SVM, KNN, and NB models through k-folds cross-validation . . . . . . . . . . . . . . . . . 105 5.3.1.3 Testing SVM, KNN, and NB unbalance-trained models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.2 Handling unbalanced-training for PQ disturbance classication107 5.3.2.1 Synthetic minority oversampling technique to balance the training dataset . . . . . . . . . . . . . . . . . . . 107 5.3.2.2 Enhanced classication performance for models trained with SMOTE-balanced dataset . . . . . . . . . . . . 109 5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3.4 Classication of real-world PQ disturbance with SMOTE-balance approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Apendice 6 Thesis conclusions and future work 117 6.1 Final conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.1 Contributions to the state of the art . . . . . . . . . . . . . . 118 6.2.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.2.1 Conference papers . . . . . . . . . . . . . . . . . . . . 118 6.2.2.2 Research papers on international journals . . . . . . . 119 6.2.2.3 Book chapters . . . . . . . . . . . . . . . . . . . . . . 119 6.2.2.4 Research papers in process . . . . . . . . . . . . . . . 119 6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
dc.formatapplication/PDF
dc.language.isoeng
dc.publisherBiblioteca Digital wdg.biblio
dc.publisherUniversidad de Guadalajara
dc.rights.urihttps://www.riudg.udg.mx/info/politicas.jsp
dc.titleIntelligent power quality monitoring on distributed generation systems
dc.typeTesis de Doctorado
dc.rights.holderUniversidad de Guadalajara
dc.rights.holderCortes Robles, Oswaldo Isaac
dc.coverageGUADALAJARA, JALISCO
dc.type.conacytdoctoralThesis
dc.degree.nameDOCTORADO EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES
dc.degree.departmentCUCEI
dc.degree.grantorUniversidad de Guadalajara
dc.degree.creatorDOCTOR EN CIENCIAS DE LA ELECTRONICA Y LA COMPUTACION CON ORIENTACIONES
dc.contributor.directorBarocio Espejo, Emilio
Aparece en las colecciones:CUCEI

Ficheros en este ítem:
Fichero TamañoFormato 
DCUCEI10200.pdf
Acceso Restringido
8.45 MBAdobe PDFVisualizar/Abrir    Request a copy


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.